Raman Study of the Coordination Structure of a Rare Earth-Acetate Complex in Water

Takahiro Takekiyo* and Yukihiro Yoshimura

Department of Applied Chemistry, National Defense Academy, 1-10-20, Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

Received: January 21, 2007; In Final Form: May 1, 2007

The Raman spectra of aqueous LnCl₃·20H₂O·CH₃COOLi (LnCl₃, rare earth chloride) solutions have been measured in the liquid state. The change of the Raman symmetric Ln³⁺–OH₂ stretching band (ν_w) showed that the decrease in the ionic radius of rare earth (Ln³⁺) ions induces a change in coordination number of the Ln³⁺ ion. The two peaks at 946 and 958 cm⁻¹ of the C–C stretching band (ν_{CC}) of the acetate ion are assigned to the bidentate ligand and the polymeric chain structure, respectively. The coordination structure of the acetate ion to Ln³⁺ ion prefers the bidentate ligand to the polymeric chain structure throughout the rare earth series. The fraction of the bidentate ligand increases with decreasing ionic radius of the Ln³⁺ ion. On the basis of the analyses of the ν_w and ν_{CC} bands, the change in the coordination number of the Ln³⁺ ion is mainly due to the structural change (from the polymeric chain structure to the bidentate ligand) of the Ln³⁺ acetate complex rather than a elimination of one water molecule. Our results show that the Ln³⁺ ions tend to form the bidentate ligand rather than the divalent (M²⁺) ions.

1. Introduction

There have been several studies of aqueous rare earth electrolyte solutions.¹ Many experimental techniques, such as X-ray diffraction,^{2–4}Raman spectroscopy,⁵ and thermodynamics,^{6–9} have been applied to investigate the complex formation of rare earth (Ln^{3+}) ions in water.

Many thermodynamic and transport properties of aqueous rare earth electrolyte solutions show irregularities when plotted against the ionic radius,^{7–9} although the ionic radius of Ln³⁺ ion decreases smoothly from lanthanum (La³⁺) to lutetium (Lu³⁺) ions because of lanthanide contraction. It is known that the coordination number of Ln³⁺ ions in glassy aqueous rare earth chloride (LnCl₃) solutions changes from 9 for the light Ln³⁺ ions (La³⁺–Sm³⁺) to 8 for the heavy Ln³⁺ ions (Tb³⁺–Ln³⁺).^{5,10–12} A similar change in the coordination number for the Ln³⁺ ions in the middle region (Gd³⁺–Ho³⁺ or Er³⁺) of the rare earth series has been observed in alcohol LnCl₃ solutions.^{13,14} Therefore, it would also be interesting to determine whether the coordination number of Ln³⁺ ions in aqueous carboxylic acid solutions changes.

Another interesting topic is that the study of the coordination behavior of the carboxylate (RCOO⁻, R = alkyl chain) ion with Ln³⁺ ion is important for understanding the additive effect of Ln³⁺ ions on the helix-coil transition of poly-L-glutamic acid (PLGA), which is a model polypeptide of the fold-unfold equilibrium of a protein. It is widely accepted that the addition of divalent cations (M^{2+} ions) such as Mg^{2+} and Ca^{2+} ions to PLGA enhances the structural stability of the α -helix by chelate formation between the COO⁻ group of the side chain and the M²⁺ ions.^{15,16} There are three typical representative structures of the metal cation (M)-COO⁻ complexes:¹⁷⁻²⁰ the monodentate, bidentate, and bridging bidentate ligands (Figure 1). It might be interesting to investigate the additive effect of Ln³⁺ ions on the structural stability of the α -helix of PLGA, because the ionic radii of Ln^{3+} ions are close to those of Mg^{2+} and Ca^{2+} ions. There are three typical representative structures of the metal cation (M)-COO⁻ complexes:¹⁷⁻²⁰ the monodentate, bidentate, and bridging bidentate ligands (Figure 1).

Figure 1. Three typical structures of the metal cation (M)-acetate ion (CH_3COO^-) complexes: (a) monodentate ligand, (b) bidentate ligand, and (c) bridging bidentate ligand.

The study on the coordination structure of the RCOO⁻ ion such as an acetate ion to a Ln^{3+} ion was reported by Garza et al.²¹ The result of ultrasonic absorption by Garza et al.²¹ suggested that the acetate ion forms a bidentate ligand with the Ln^{3+} ion in water. However, there have been no other detailed studies on the coordination structure of the acetate ion with Ln^{3+} ion; the study by Garza et al.²¹ is insufficient for the elucidation of the coordination behavior of the acetate ion.

In this study, we have measured the Raman symmetric Ln^{3+} – OH₂ stretching and C–C stretching spectra of $LnCl_3 \cdot 20H_2O \cdot$ CH₃COOLi and compared the results with those of the aqueous $LnCl_3$ and MgCl₂ solutions. There are some reasons that we employed $LnCl_3 \cdot 20H_2O \cdot CH_3COOLi$ solutions as the reagents. First, as the solubility of rare earth acetates is not too high [at most $Ln(CH_3COO)_3 \cdot 200-250H_2O$], the Raman $Ln^{3+}-OH_2$ stretching band, which is a measure of the coordination number change of a Ln^{3+} ion, is not observed in the aqueous

^{*} To whom correspondence should be addressed. Tel: +81-46-841-3810. Fax: +81-46-844-5901. E-mail: take214@nda.ac.jp.

Ln(CH₃COO)₃ solutions. The information of the coordination number change of Ln³⁺ ions in glassy rare earth chloride solutions (LnCl₃·20H₂O; in this system, Cl⁻ ion does not coordinate to Ln³⁺ ion) is available in the literature.⁵ Additionally, a metal (Ln³⁺ ion) to ligand (CH₃COO⁻ ion) ratio of 1:1 might be better than 1:3 to simply identify the coordination behavior of the acetate ion with a Ln³⁺ ion, because the acetate ion in aqueous Ln(CH₃COO)₃ solutions could induce more complex

coordination structures. Therefore, we have investigated the $LnCl_3 \cdot 20H_2O \cdot CH_3COOLi$ solutions to study the coordination structure of rare earth–acetate complex in water. We show that the coordination structure of the acetate ion to Ln^{3+} ion prefers the bidentate ligand to the polymeric chain structure throughout the rare earth series.

2. Materials and Methods

Rare earth chlorides (LnCl₃; Ln³⁺ = La³⁺ – Lu³⁺) were obtained from Soekawa Chemical Co. Lithium acetate (CH₃COOLi) and magnesium chloride (MgCl₂) were obtained from Wako Junyaku Industry Co. Ltd. All sample solutions (LnCl₃·20H₂O, LnCl₃·20H₂O·CH₃COOLi, and MgCl₂·20H₂O·CH₃-COOLi) were prepared by dissolving the required amounts of LnCl₃ or MgCl₂ and CH₃COOLi in water.

Raman spectra were measured by a Jasco NR-1800 Raman spectrophotometer equipped with a single monochromator and a charge-coupled device (CCD) detector. The exposure time of each run and spectral resolution were 300 s and 4.5 cm⁻¹, respectively. The 514.5 nm line from Lexel Ar⁺ ion laser was used as an exacting source with a power of 350 mW. The liquid samples were measured at room temperature. The obtained spectra were fitted with the Gaussian–Lorentzian mixing functions using the GRAMS/386 software (Galactic Ind. Co. Ltd.) to analyze the Ln³⁺–OH₂ and C–C stretching bands.

3. Results and Discussion

Figure 2a shows the Raman spectra in the region from 250 to 500 cm⁻¹ of LnCl₃·20H₂O·CH₃COOLi as a function of Ln³⁺ ion. It is well-known that when the interaction between the metal cation (M) and the coordinated water molecules are strong enough, a Raman band due to the symmetric M-OH₂ stretching vibration (ν_w) is observed in the low-frequency region from 300 to 550 cm^{-1,5,22-26} Basically, the Raman $\nu_{\rm w}$ band of aqueous LnCl₃ solution in the liquid state is weaker than that in the glassy state because of the overwhelmingly strong Raman scattering wing.⁵ The clear characterization of the $\nu_{\rm w}$ band is possible when the solution is vitrificated. A Raman spectrophotometer equipped with a high performance CCD detector, however, enabled us to observe the weak ν_w band of $LnCl_3{\boldsymbol{\cdot}}20H_2O$ and LnCl₃·20H₂O·CH₃COOLi in the liquid state. According to the previous Raman study,⁵ the Raman symmetric La³⁺-OH₂ stretching band (ν_w) in the aqueous LaCl₃ solution is observed in the region from 330 to 385 cm^{-1} in the liquid and glassy states. On the other hand, the Raman symmetric M-O stretching band of the M-anion complex such as CH₃COO⁻, NO₃⁻, and ClO_4^- in aqueous solution is observed in the region from 180 to 230 cm⁻¹.^{22,27,28} Unfortunately, in this study, the Raman symmetric Ln³⁺–O stretching band of the Ln³⁺–acetate complex could not be observed in this region due to the strong Rayleigh scattering wing. We applied the Raman v_w band for the investigation of the coordination behavior of Ln³⁺ ion in LnCl₃•20H₂O•CH₃COOLi.

Figure 2b compares the ν_w frequency variations of LnCl₃·20H₂O and LnCl₃·20H₂O·CH₃COOLi in the liquid state

Figure 2. (a) Typical Raman Ln^{3+} –OH₂ stretching (ν_w) spectra of aqueous LnCl₃·CH₃COOLi solutions as a function of Ln³⁺ ion and (b) the ν_w frequency variations in the LnCl₃·20H₂O and LnCl₃·20H₂O·CH₃-COOLi as a function of ionic radius (r) of Ln³⁺ ion. The open and closed circles represent the LnCl₃·20H₂O and LnCl₃·20H₂O·CH₃-COOLi, respectively.

as a function of ionic radius of Ln^{3+} ion. A remarkable point in Figure 2b is that the S-shaped behavior of the ν_w frequencies in both solutions is shown, and these frequencies rapidly increase from Nd³⁺ to Tb³⁺ ions for LnCl₃·20H₂O by about 25 cm⁻¹ and from Nd³⁺ to Sm³⁺ ions for LnCl₃·20H₂O·CH₃COOLi by 14 cm⁻¹, respectively. On the whole, the value of the ν_w frequency of LnCl₃·20H₂O·CH₃COOLi is lower than that of LnCl₃·20H₂O.

It was concluded that the S-shaped behavior of the Raman frequency shift^{15,16} and thermodynamic properties^{7,29-32} throughout the rare earth series are caused by the change in the coordination number of the Ln³⁺ ion. Kanno et al.^{5,10,12} reported that the $\nu_{\rm w}$ frequency of the LnCl₃•20H₂O solutions in the glassy state shifts to a higher frequency from La³⁺ to Lu³⁺ ions, and the two v_w peaks at 369 and 394 cm⁻¹ are observed in the middle region (Eu³⁺ and Gd³⁺). The two peaks at 369 and 394 cm⁻¹ are assigned to the nine- and eight-coordination structures of the $[Ln(H_2O)_n]^{3+}$ complex (n = 9-8), respectively. The difference in the v_w frequencies (25 cm⁻¹) corresponds to the elimination of a water molecule from [Ln(H₂O)₉]³⁺ to [Ln- $(H_2O)_8]^{3+}$ complexes. Importantly, the observed ν_w frequency shift between Nd^{3+} and Tb^{3+} ions for $LnCl_3 \cdot 20H_2O$ in the liquid state is 25 cm⁻¹, which is almost equal to that in the glassy state. This means that the coordination number of Ln³⁺ ion for LnCl₃•20H₂O in the liquid state might change from nine to eight

Figure 3. Typical Raman C–C stretching (ν_{CC}) spectra of the acetate ion in the aqueous LnCl₃·CH₃COOLi solutions as a function of Ln³⁺ ion.

with decreasing ionic radius of the Ln^{3+} ion. On the other hand, the observed ν_w frequency shift between Nd^{3+} and Sm^{3+} ions in $LnCl_3 \cdot 20H_2O \cdot CH_3COOLi$ is 14 cm^{-1} , which is smaller than that in $LnCl_3 \cdot 20H_2O$. We suppose that the change in the coordination number of the Ln^{3+} ion may arise from the change in the coordinate structure of the acetate ion rather than the elimination of a water molecule as describe below.

Thus, we examined the coordination behavior of the acetate ion. Figure 3 shows the Raman C–C stretching (ν_{CC}) spectra of the acetate ion across the rare earth series. The two peaks at 946 and 958 cm⁻¹ were determined by the second derivative of the original spectra. According to recent Raman studies of dilute aqueous acetate salt solutions such as (CH₃COO)₂Mg and (CH₃COO)₂Cu,^{33–36} the peak at around 945 cm⁻¹ is assigned to the bidentate ligand. The observed peak at 946 cm⁻¹ in aqueous LnCl₃·CH₃COOLi solutions appeared in the same peak position as the bidentate ligand of dilute aqueous acetate salt solutions.^{33–36} Therefore, we assigned the peak at 946 cm⁻¹ to the bidentate ligand.

Recently, Wang et al.³⁵ revealed that the relative concentration of the polymeric chain structure, which constructs the bridging bidentate ligand of aqueous $(CH_3COO)_2Mg$ solution, increases with increasing salt concentration. The observed peak intensity at 958 cm⁻¹ in aqueous LnCl₃·CH₃COOLi solutions increases with increasing acetate ion concentration and that at 946 cm⁻¹, which is assigned to the bidentate ligand, decreases (data not shown). This result is qualitatively consistent with the salt concentration dependence of the polymeric chain structure of aqueous (CH₃COO)₂Mg solutions. Therefore, the observed peak at 958 cm⁻¹ in aqueous LnCl₃·CH₃COOLi solutions might relate to a polymeric chain structure.

Next, we consider the polymeric chain structure of aqueous $LnCl_3 \cdot CH_3COOLi$ solutions. Ribot et al.³⁷ reported that the coordination state of $Ln(CH_3COO)_3 \cdot nH_2O$ (n = 1-4) in the crystal state takes a bridging complex and polymeric structure. Meyer determined the chain structure of $[Sm(CH_3COO)(H_2O)_6]$ - $Cl_3(H_2O)$, which takes an eight-coordinated structure, in the crystal state.³⁸ The chain structure of $[Sm(CH_3COO)(H_2O)_6]$ - $Cl_3(H_2O)$ consists of bidentate and bridging bidentate ligands. The polymeric structure suggested by Ribot et al.³⁷ may be close to the chain structure of $[Sm(CH_3COO)(H_2O)_6]$ - $Cl_3(H_2O)$. On the basis of the results of Ribot et al.³⁷ and Meyer,³⁸ we suggest that the polymeric chain structure of the acetate ion in aqueous $LnCl_3$ - CH_3COOLi solutions is as shown in Figure 4.

To be certain of the above speculation, we performed the ν_{CC} frequency calculations of the bidentate ligand and polymeric

Polymeric chain structure

Figure 4. Simple scheme of the polymeric chain structure of the acetate ion to the Ln^{3+} ion in the aqueous $LnCl_3 \cdot CH_3COOLi$ solutions. The water molecules and chloride ions are not represented.

Figure 5. (a) ν_{CC} frequency variations and (b) the intensity fractions of the bidentate ligand and polymeric chain structure of the ν_{CC} band of the acetate ion as a function of ionic radius (*r*) of Ln³⁺ ion. The open and closed circles represent the bidentate ligand and polymeric chain structure, respectively.

chain structure of the La³⁺-acetate complex using density functional theory (DFT) at the B3LYP/6-311++G(d,p) level.³⁹ The peaks at 982 cm⁻¹ for the bidentate ligand and at 996 cm⁻¹ for the polymeric chain structure were determined by this calculation. It is important to note that the observed frequency at 958 cm⁻¹ for the polymeric chain structure is higher than that at 945 cm⁻¹ for the bidentate ligand. The difference in the observed frequencies between the polymeric chain structure and the bidentate ligand is almost the same as that in the calculated frequencies. The calculated result is qualitatively consistent with the experimental result. Therefore, the assignment of the observed peak at 958 cm⁻¹ to a polymeric chain structure is probably correct, although the length of the polymeric chain structure in the present study is unclear. We applied this assignment to the following discussion.

Next, we discuss the coordination structure of the acetate ion with Ln^{3+} ion. Figure 5a shows the ν_{CC} frequency variations of the bidentate ligand and polymeric chain structure across the rare earth series. On the whole, the ν_{CC} frequencies of the bidentate ligand and polymeric chain structure shift to a higher

frequency with the decreasing ionic radius of Ln³⁺ ion. When the intermolecular electrostatic interaction between the Ln³⁺ and acetate ions becomes stronger, the force constant of the C–C bond of the acetate ion weakens and the ν_{CC} frequency shifts to a higher frequency. The slope of the ν_{CC} frequency of the bidentate ligand against the ionic radius of Ln³⁺ ion in Figure 5a is larger than that of the polymeric chain structure. This means that the intermolecular electrostatic interaction between the Ln³⁺–bidentate ligands becomes stronger than that between the Ln³⁺–polymeric chain structures with a decreasing ionic radius of Ln³⁺ ion.

Another remarkable point in Figure 5a is that the ν_{CC} frequencies of the bidentate ligand and polymeric chain structure rapidly increase from Nd³⁺ to Sm³⁺ ions; this is consistent with the results of the ν_w frequency change, as shown in Figure 2b. Thus, we suppose that the change in the coordination number of the Ln³⁺ ion has a close relationship with the change in the coordination behavior of the acetate ion.

To ensure the relation between the change in the coordination number of Ln^{3+} ion and the change of the coordination behavior of acetate ion, using the same procedure in the previous studies,^{40,41} we estimated the intensity fractions (*f*) of the bidentate ligand (*f*_{bidentate}) and polymeric chain structure (*f*_{polymeric}) from the equations

$$f_{\text{bidentate}} = \frac{I_{\text{bidentate}}}{I_{\text{bidentate}} + I_{\text{polymeric}}}$$
$$f_{\text{polymeric}} = \frac{I_{\text{polymeric}}}{I_{\text{bidentate}} + I_{\text{polymeric}}}$$

where $I_{\text{bidentate}}$ and $I_{\text{polymeric}}$ represent the relative Raman intensities of the bidentate ligand and polymeric chain structure, respectively. Figure 5b shows the changes in $f_{\text{bidentate}}$ and $f_{\text{polymeric}}$ as a function of the ionic radius of Ln^{3+} ion. It is evident that $f_{\text{bidentate}}$ is dominant throughout the rare earth series. The value of $f_{\text{bidentate}}$ increases with decreasing ionic radius of Ln^{3+} ion and that of $f_{\text{polymeric}}$ decreases. Accordingly, our results show that the heavy Ln^{3+} ion prefers the bidentate ligand to the polymeric chain structure. As the ionic radius of Ln^{3+} ion decreases due to lanthanide contraction, it is highly possible that the change in the coordination structure of the acetate ion to Ln^{3+} ion is dominated by the size of Ln^{3+} ion.

Raman spectroscopy does not give a definite picture of the total coordination number around Ln³⁺ ions in the LnCl₃•20H₂O•CH₃COOLi. However, a plausible picture might be extracted from the present and available experimental data. As seen in Figure 2b, the value of v_w frequency of LnCl₃·20H₂O·CH₃COOLi is generally lower than about 20 cm⁻¹ that of the corresponding LnCl₃·20H₂O. From the empirical trend,^{5,12,25} the formation of higher complex results in the decrease of the symmetric M-OH₂ stretching frequency. Therefore, the straightforward conclusion of this result is that it may arise from the difference in the numbers of coordinated water molecules to a Ln³⁺ ion between LnCl₃·20H₂O· CH₃COOLi and LnCl₃·20H₂O. However, there is another possibility that a negative deviation of the ν_w band for the acetate solution from that for the corresponding chloride solution arises from the matching between the Ln³⁺ ion and its coordination sphere when one acetate ion constitutes a part of the coordination sphere. If the matching is not so better, the $Ln^{3+}-OH_2$ interaction becomes weaker, resulting in the lower v_w frequency for the acetate solution than that for the corresponding chloride solution. It is, however, difficult to say whether it is the case.

On the basis of the results of the ν_w and ν_{CC} frequencies and intensity fractions (*f*), we can conclude the following. (i) The coordination number of the Ln³⁺ ion should change and decrease by one (probably from nine to eight). (ii) The change in the coordination number of Ln³⁺ ion across the rare earth series is mainly due to the coordinated structural change (from the polymeric chain structure to the bidentate ligand) of the acetate ion rather than the elimination of one water molecule.

Finally, we discuss the difference in the coordination structures between divalent metal ion-acetate and rare earthacetate complexes. As a candidate for this, we quote the Mg²⁺ and Tm^{3+} ions, because the ionic radius of the Mg^{2+} ion (0.860 Å)⁴² is almost the same value as that of the Tm^{3+} ion (0.858) Å). The v_{CC} frequencies of the bidentate ligand and the polymeric chain structure of the acetate ion in aqueous MgCl₂ solution (947 cm^{-1} for the bidentate ligand and 954 cm^{-1} for the polymeric chain structure) are lower than those in aqueous TmCl₃ solution (956 cm⁻¹ for the bidentate ligand and 965 cm⁻¹ for the polymeric chain structure). The values of f_{bidentate} and f_{polymeric} in aqueous MgCl₂ solution are 0.4 and 0.6, respectively. The situation reverses in aqueous $TmCl_3$ solution ($f_{bidentate}$: $f_{\rm polymeric} = 0.9:0.1$). These results clearly show that the intermolecular electrostatic interaction between the Tm³⁺ and the acetate ions is stronger than that between the Mg^{2+} and the acetate ions and that the Tm³⁺ ion tends to form the bidentate ligand rather than the Mg²⁺ ion.

4. Conclusions

The Raman Ln^{3+} –OH₂ (ν_w) and C–C stretching (ν_{CC}) spectra of the acetate ion in aqueous LnCl₃·CH₃COOLi solutions have been measured as a function of ionic radius of Ln³⁺ ion. We discussed the change in the coordination structure of the acetate ion to Ln³⁺ ion. On the basis of the analyses of ν_w and ν_{CC} bands, the lanthanide contraction induces the change in the coordination number of the Ln³⁺ ion followed by the change in the coordination structure of the Ln³⁺–acetate complex. The coordination structure of the acetate complex prefers the bidentate ligand to the polymeric chain structure.

On the basis of the results of the aqueous $MgCl_2$ and $TmCl_3$ solutions, the Ln^{3+} ions tend to form the bidentate ligand rather than the divalent (M^{2+}) ions. For the studies of the metal ions including Ln^{3+} ions binding to the active site in proteins, it is important to reveal the interaction and coordination structure between the metal ions and the COO⁻ groups of organic compounds such as acetate ion. More studies on the additive effect of Ln^{3+} ions on the structural stability of oligopeptides, including charged amino acid residues such as those of Asp and Glu, will help us to understand the additive effect of Ln^{3+} ions on the structural stability of proteins.

References and Notes

- (1) Alexander, A. Chem. Rev. 1995, 95, 273.
- (2) Habenschuss, A.; Spedding, F. H. J. Chem. Phys. 1979, 70, 2797.
- (3) Habenschuss, A.; Spedding, F. H. J. Chem. Phys. 1979, 70, 3758.
- (4) Habenschuss, A.; Spedding, F. H. J. Chem. Phys. 1980, 73, 442.
- (5) Kanno, H.; Hiraishi, J. Chem. Phys. Lett. 1980, 75, 553.
- (6) Choppin, G. R.; Graffeo, A. J. Inog. Chem. 1965, 4, 1265.

(7) Spedding, F. H.; Pikal, M. J.; Ayers, B. O. J. Phys. Chem. 1966, 64, 2440.

- (8) Spedding, F. H.; Cullen, P. F.; Habenschuss, A. J. Phys. Chem. 1974, 78, 1106.
 - (9) Kanno, H.; Akama, Y. Chem. Phys. Lett. 1980, 72, 181.
 - (10) Kanno, H.; Hiraishi, J. J. Phys. Chem. 1982, 86, 1488.

(12) Kanno, H.; Hiraishi, J. J. Phys. Chem. 1984, 88, 2787.

⁽¹¹⁾ Kanno, H.; Yokoyama, H. *Polyhedron* **1996**, *15*, 1437.

⁽¹³⁾ Kanno, H.; Namekata, S.; Akama, Y. J. Alloys Compd. 1998, 868,

(14) Yoshimura, Y.; Namekata, S.; Kanno, Y. J. Solution Chem. 2001, 30, 213.

(15) Kono, N.; Ikegami, A. Biopolymers 1966, 4, 823.

(16) Takesada, H.; Yamazaki, Y.; Wada, A. *Biopolymers* 1966, 4, 713.

(17) Deacon, G. B.; Phillips, R. J. Coord. Chem. Rev. 1980, 33, 227.

(18) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed.; Wiley: New York, 1986; p 186.

(19) Yang, M. M.; Crerar, D. A.; Irish, D. E. Geochim. Cosmochim. Acta 1989, 53, 319.

(20) Nara, M.; Torii, H.; Tasumi, M. J. Phys. Chem. 1996, 100, 19812.
(21) Garza, V. L.; Purdie, N. J. Phys. Chem. 1970, 74, 275.

(22) Irish, D. E.; Brooker, M. H. In *Advances in Infrared and Raman Spectroscopy*; Clark, R. J. H., Hester, R. E., Eds.; Heyden & Sons: London, 1976; Vol. 2, Chapter 6, p 212.

(23) Brooker, M. H. In The Chemical Physics of Solvation; Ulstrup, J.,

Dogonadze, R. R., Kálmán, E., Karnyshev, A. A., Eds.; Elsevier: Netherlands, 1985; Chapter 4, p 1.

(24) Kanno, H.; Hiraishi, J. J. Raman Spectrosc. 1982, 12, 224.

(25) Kanno, H. J. Raman Spectrosc. 1987, 18, 301.

(26) Kanno, H. J. Phys. Chem. 1988, 92, 4232.

(27) Bünzli, J.-C. G.; Milicic-Tang, A. In *Handbook on the Physics and Chemistry of Rare Earths*; Gschneidner, K. A., Jr., Eyring, L., Eds.; Elsevier Science B. V.: Amsterdam, 1995; Chapter, pp 145, 305.

(28) Ferraro, J. R.; Cristallini, C.; Fox, I. J. Inorg. Nucl. Chem. 1967, 29, 139.

(29) Bertha, S. L.; Choppin, G. R. J. Phys. Chem. 1969, 8, 613.

(30) Spedding, F. H.; Rard, J. A. J. Phys. Chem. 1974, 78, 1435.

(31) Rard, J. A.; Spedding, F. H. J. Phys. Chem. 1975, 79, 257.

(32) Spedding, F. H.; Rard, J. A.; Habenschuss, A. J. Phys. Chem. 1977, 81, 1069.

(33) Nickolov, Zh.; Ivanov, I.; Georgiev, G.; Stoilova, D. J. Mol. Struct. 1996, 377, 13.

(34) Quiles, F.; Burneau, A. Vib. Spectrosc. 1998, 16, 105.

(35) Wang, L. Y.; Zhang, Y. H.; Zhao, L. J. J. Phys. Chem. A 2005, 109, 609.
(36) Rai, A.; Sengupta, S. K.; Pandey, O. P. Spectrochim. Acta 2006, A

(37) Ribot, F.; Toledano, P.; Sanchez, C. Inorg. Chim. Acta 1991, 185,

(37) Ribbi, F.; Toledano, F.; Sanchez, C. *Inorg. Chim. Acta* **1991**, 185, 239.

(38) Meyer, G. J. Alloys Compd. 2000, 300-301, 113.

(39) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. *Gaussian 98*; Gaussian, Inc.: Pittsburgh, PA, 1998.

(40) Takekiyo, T.; Yoshimura, Y. Chem. Phys. Lett. 2006, 420, 8.

(41) Takekiyo, T.; Yoshimura, Y. J. Phys. Chem. A **2006**, 110, 10829.

(42) Shanon, R. D.; Prewitt, A. D. Acta Crystallogr. 1976, A32, 751.